메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국스마트미디어학회 스마트미디어저널 스마트미디어저널 제9권 제1호
발행연도
2020.1
수록면
16 - 22 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 연구에서는 Multi-Tasking U-net를 사용하여 영역 세분화 작업(Segmentation) 과 분류 작업(Classification) 이 동시에 수행되게 함으로써 파프리카 병과 충 진단을 수행하였다. 시설 농장의 파프리카에는 병의 종류가 다양하지 않다. 이 연구에서는 비교적 발생빈도가 높은 흰가루병과 응애에 의한 피해, 정상 잎 3개의 클래스에 대해서만 진단 할 수 있도록 하였다. 이를 위한 중추 모델로는 U-net을 사용하였다. 또, 이 모델의 Encoder와 Decoder의 최종 단을 활용하여 분류 작업과 영역 세분화 작업이 각 각 수행되게하여, U-net의 Encoder가 분류작업과 영역 세분화 작업에 공유되도록 하였다. 학습 데이터로는 정상 잎 680장, 응애에 의한 피해 잎 450장, 흰가루병 370장을 사용하였다. 테스트 데이터로는 정상 잎 130장, 응애에 의한 피해 잎 100장, 흰가루병 90장을 사용하였고, 이를 통한 테스트 결과로는 89%의 인식률을 얻었다.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0