메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국ITS학회 한국ITS학회 논문지 한국ITS학회 논문지 제18권 제6호
발행연도
2019.1
수록면
155 - 163 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 대전광역시 주요 간선도로인 유성대로를 대상으로 드론을 통해 취득한 노면영상데이터를 기반으로 물체탐지알고리즘(Object Detection algorithm) 가운데 Tiny-YOLO-V2와Faster-RCNN을 활용하여 아스팔트 도로노면의 균열을 인식, 균열유형을 구분하고 실험 결과차이를 비교하였다. 분석결과, Faster-RCNN의 mAP는 71%이고 Tiny-YOLO-V2의 mAP는 33%로 측정되었으며, 이는 1stage Detection인 YOLO계열 알고리즘보다 2Stage Detection인 Faster-RCNN 계열의 알고리즘이 도로노면의 균열을 확인하고 분리하는데 더 좋은 성능을 보인다는 것을 확인하였다. 향후, 드론과 인공지능형 균열검지시스템을 이용한 도로자산관리체계(Infrastructure Asset Management) 구축방안 마련을 통해 효율적이고 경제적인 도로 유지관리 의사결정 지원시스템 구축 및 운영 환경을 조성할 수 있을 것이라 판단된다.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0