메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국융합신호처리학회 융합신호처리학회 논문지 융합신호처리학회 논문지 제20권 제4호
발행연도
2019.1
수록면
238 - 244 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this study, we compared and analyzed the performance of each Convolution Neural Network (CNN) by implementing the CNN that reflected the characteristics of the cerebral structure, in order to analyze the CNN that was used for the prediction of cybersickness, and provided the performance varying depending on characteristics of the brain. Dizziness has many causes, but the most severe symptoms are considered attributable to vestibular dysfunction associated with the brain. Brain waves serve as indicators showing the state of brain activities, and tend to exhibit differences depending on external stimulation and cerebral activities. Changes in brain waves being caused by external stimuli and cerebral activities have been proved by many studies and experiments, including the thesis of Martijn E. Wokke, Tony Ro, published in 2019. Based on such correlation, we analyzed brain wave data collected from dizziness-inducing environments and implemented the dizziness predictive artificial neural network reflecting characteristics of the cerebral structure. The results of this study are expected to provide a basis for achieving optimal performance of the CNN used in the prediction of dizziness, and for predicting and preventing the occurrence of dizziness under various virtual reality (VR) environments.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0