메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한치주과학회 Journal of Periodontal & Implant Science Journal of Periodontal & Implant Science 제50권 제1호
발행연도
2020.1
수록면
28 - 37 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: The aim of our study was to determine the prevalence and degree of lingual concavities in the first molar region of the mandible to reduce the risk of perforating the lingual cortical bone during dental implant insertion. Methods: A total of 163 suitable cross-sectional cone-beam computed tomography images of edentulous mandibular first molar regions were evaluated. The mandibular morphology was classified as a U-configuration (undercut), a P-configuration (parallel), or a C-configuration (convex), depending on the shape of the alveolar ridge. The characteristics of lingual concavities, including their depth, angle, vertical location, and additional parameters, were measured. Results: Lingual undercuts had a prevalence of 32.5% in the first molar region. The mean concavity angle was 63.34°±8.26°, and the mean linear concavity depth (LCD) was 3.03±0.99 mm. The mean vertical distances of point P from the alveolar crest (Vc) and from the inferior mandibular border were 9.39±3.39 and 16.25±2.44, respectively. Men displayed a larger vertical height from the alveolar crest to 2 mm coronal to the inferior alveolar nerve (Vcb) and a wider LCD than women ( P <0.05). Negative correlations were found between age and buccolingual width at 2 mm apical to the alveolar crest, between age and Vcb, between age and Vc, and between age and LCD ( P <0.05). Conclusions: The prevalence of lingual concavities was 32.5% in this study. Age and gender had statistically significant effects on the lingual morphology. The risk of lingual perforation was higher in young men than in the other groups analyzed.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0