메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회논문집 대한수학회논문집 제35권 제1호
발행연도
2020.1
수록면
201 - 215 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, a boundary version of Carath\'{e}odory's inequality on the right half plane for $p$-valent is investigated. Let $Z(s)=1+c_{p}\left( s-1\right) ^{p}+c_{p+1}\left( s-1\right) ^{p+1}+\cdots$ be an analytic function in the right half plane with $\Re Z(s)\leq A$ $\left( A>1\right) $ for $\Re s\geq 0$ . We derive inequalities for the modulus of $Z(s)$ function, $|Z^{\prime }(0)|$, by assuming the $Z(s)$ function is also analytic at the boundary point $s=0$ on the imaginary axis and finally, the sharpness of these inequalities is proved.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0