메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제57권 제3호
발행연도
2020.1
수록면
535 - 545 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $A$ be an $m\times n$ matrix over nonnegative integers. The isolation number of $A$ is the maximum number of isolated entries in $A$. We investigate linear operators that preserve the isolation number of matrices over nonnegative integers. We obtain that $T$ is a linear operator that strongly preserve isolation number $k$ for $1\le k\le \min\{m,n\}$ if and only if $T$ is a ($P,Q$)-operator, that is, for fixed permutation matrices $P$ and $Q$, $T(A) = PAQ$ or, $m=n$ and $T(A) = PA^t Q$ for any $m\times n$ matrix $A$, where $A^t $ is the transpose of $A$.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0