지원사업
학술연구/단체지원/교육 등 연구자 활동을 지속하도록 DBpia가 지원하고 있어요.
커뮤니티
연구자들이 자신의 연구와 전문성을 널리 알리고, 새로운 협력의 기회를 만들 수 있는 네트워킹 공간이에요.
등록된 정보가 없습니다.
논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!
A Note on Yamabe Solitons and Gradient Yamabe Solitons
Kyungpook Mathematical Journal
2022 .03
Ricci-Yamabe Solitons and Gradient Ricci-Yamabe Solitons on Kenmotsu 3-manifolds
Kyungpook Mathematical Journal
2021 .12
3-Dimensional Trans-Sasakian Manifolds with Gradient Generalized Quasi-Yamabe and Quasi-Yamabe Metrics
Kyungpook Mathematical Journal
2021 .09
On a class of complete non-compact gradient Yamabe solitons
대한수학회보
2018 .01
Sasakian 3-manifolds admitting a gradient Ricci-Yamabe soliton
한국수학논문집
2021 .09
Yamabe solitons on Kenmotsu manifolds
대한수학회논문집
2019 .01
On a classification of warped product spaces with gradient Ricci solitons
한국수학논문집
2016 .01
Riemannian submersions whose total manifold admits $h$-almost Ricci-Yamabe soliton
대한수학회논문집
2024 .04
Almost Kenmotsu Metrics with Quasi Yamabe Soliton
Kyungpook Mathematical Journal
2023 .03
Some doubly-warped product gradient Ricci solitons
대한수학회논문집
2016 .01
Yamabe and Riemann solitons on Lorentzian para-Sasakian manifolds
대한수학회논문집
2022 .01
Certain solitons on generalized (Κ, μ) contact metric manifolds
한국수학논문집
2020 .01
A note on almost Ricci soliton and gradient almost Ricci soliton on para-Sasakian manifolds
한국수학논문집
2020 .01
First eigenvalues of geometric operators under the Yamabe flow
대한수학회보
2016 .01
Some results in $\eta$-Ricci soliton and gradient $\rho$-Einstein soliton in a complete Riemannian manifold
대한수학회논문집
2019 .01
Generalized Ricci Solitons on N(κ)-contact Metric Manifolds
Kyungpook Mathematical Journal
2023 .06
Gradient estimates and Harnack inequalites of nonlinear heat equations for the $V$-Laplacian
대한수학회지
2018 .01
Gradient Ricci almost solitons on two classes of almost Kenmotsu manifolds
대한수학회지
2016 .01
Generalised Ricci Solitons on Sasakian Manifolds
Kyungpook Mathematical Journal
2017 .01
Ricci solitons and Ricci almost solitons on para-Kenmotsu manifold
대한수학회보
2019 .01
0