메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) JIPS(Journal of Information Processing Systems) 제16권 제2호
발행연도
2020.1
수록면
277 - 300 (24page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper presents a method for clustering short text documents, such as news headlines, social media statuses,or instant messages. Due to the characteristics of these documents, which are usually short and sparse, anappropriate technique is required to discover hidden knowledge. The objective of this paper is to identify thecombination of document representation, document distance, and document clustering that yields the bestclustering quality. Document representations are expanded by external knowledge sources represented by aDistributed Representation. To cluster documents, a Kmeans partitioningbased clustering technique is applied,where the similarities of documents are measured by word mover’s distance. To validate the effectiveness ofthe proposed method, experiments were conducted to compare the clustering quality against several leadingmethods. The proposed method produced clusters of documents that resulted in higher precision, recall, F1score, and adjusted Rand index for both realworld and standard data sets. Furthermore, manual inspection ofthe clustering results was conducted to observe the efficacy of the proposed method. The topics of eachdocument cluster are undoubtedly reflected by members in the cluster.

목차

등록된 정보가 없습니다.

참고문헌 (78)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0