메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
With the wide spread of Social Network Services (SNS), fake news—which is a way of disguising false informationas legitimate media—has become a big social issue. This paper proposes a deep learning architecture fordetecting fake news that is written in Korean. Previous works proposed appropriate fake news detection modelsfor English, but Korean has two issues that cannot apply existing models: Korean can be expressed in shortersentences than English even with the same meaning; therefore, it is difficult to operate a deep neural networkbecause of the feature scarcity for deep learning. Difficulty in semantic analysis due to morpheme ambiguity. We worked to resolve these issues by implementing a system using various convolutional neural network-baseddeep learning architectures and “Fasttext” which is a word-embedding model learned by syllable unit. Aftertraining and testing its implementation, we could achieve meaningful accuracy for classification of the bodyand context discrepancies, but the accuracy was low for classification of the headline and body discrepancies.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0