메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제26권 제1호
발행연도
2020.1
수록면
13 - 19 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Objectives: The aim of this study was to develop machine learning (ML) and initial nursing assessment (INA)-based emergency department (ED) triage to predict adverse clinical outcome. Methods: The retrospective study included ED visits between January 2016 and December 2017 that resulted in either intensive care unit admission or emergency room death. We trained four classifiers using logistic regression and a deep learning model on INA and low dimensional (LD) INA, logistic regression on the Korea Triage and acuity scale (KTAS) and Sequential Related Organ Failure Assessment (SOFA). We varied the outcome ratio for external validation. Finally, variables of importance were identified using the random forest model’s information gain. The four most influential variables were used for LD modeling for efficiency. Results: A total of 86,304 patient visits were included, with an overall outcome rate of 3.5%. The area under the curve (AUC) values for the KTAS model were 76.8 (74.9–78.6) with logistic regression and 74.0 (72.1–75.9) for the SOFA model, while the AUC values of the INA model were 87.2 (85.9–88.6) and 87.6 (86.3–88.9) with logistic regression and deep learning, suggesting that the ML and INA-based triage system result more accurately predicted the outcomes. The AUC values for the LD model were 81.2 (79.4–82.9) and 80.7 (78.9–82.5) for logistic regression and deep learning, respectively. Conclusions: We developed an ML and INA-based triage system for EDs. The novel system was able to predict clinical outcomes more accurately than existing triage systems, KTAS and SOFA.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0