메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서홍덕 (Namseoul University) 김의명 (Namseoul University)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제38권 제3호
발행연도
2020.6
수록면
269 - 279 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
교통량 산정은 주로 교통량조사시스템, 차량검지시스템, 통행료징수시스템 등과 같은 조사 장비와 CCTV를 통한 인력 조사를 병행하고 있으나 이는 많은 인력과 비용이 발생한다. 본 연구에서는 단일 CCTV의 경우 전체 차량을 탐지하지 못하는 한계를 극복하기 위해서, 딥러닝과 스테레오 CCTV를 이용하여 교통량을 산정하는 방법을 제안하였다. 차량을 탐지하기 위한 딥러닝 모델을 학습하기 위해 COCO 데이터셋을 사용하고, 실시간으로 좌우 CCTV 영상에서 각각 차량을 탐지하였다. 그리고 나서, 각 영상에서 추출하지 못한 차량을 부등각사상변환을 이용하여 추가적으로 차량을 탐지하여 교통량 산정의 정확도를 개선하였다. 실험은 평상시 도로 환경과 안개가 발생한 기상상황의 경우에 대해서 각각 수행하였다. 평상시 도로 환경의 경우 단일 CCTV 영상을 사용할 때보다 좌우 영상에서 각각 6.75%, 5.92%의 차량 탐지의 개선효과가 있었다. 또한, 안개가 발생한 도로 환경의 경우 좌우 영상에서 각각 10.79%, 12.88%의 차량 탐지의 개선효과가 있었다.

목차

Abstract
초록
1. 서론
2. 연구방법
3. 실험
4. 결론
References

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0