메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Cui Dai (Jiangsu University) Zhaoxue Wang (Jiangsu University) Liang Dong (Jiangsu University) Yiping Chen (Jiangsu University) Junfeng Qiu (Jiangsu University)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.13 No.2
발행연도
2020.6
수록면
476 - 484 (9page)
DOI
10.5293/IJFMS.2020.13.2.476

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In order to solve the problem of generating distortion elements in the mapping from parameter space to real space, and the boundary coincidence of the mesh generated by the software quality, an approach for parametric surface mesh generation based on Riemannian metric, combined with Delaunay triangulation and AFT is proposed. In our algorithm, the boundary curves are discretized based on the proximity and curvature of the curves in the model after derivation the correlation of curve length between parametric space and real space. Background meshes of parametric space were generated by using improved AFT, and could improve the efficient of the algorithm and control element sizing and metric values. When background mesh of parametric space were refined, to counteract mapping distortion, the traditional Delaunay incremental insertion kernel is replaced by inserting the center of triangle circumscribed ellipse, and the algorithm for locating ellipse center and judging whether nodes within ellipse. In this paper, the details of the surface mesh generated by the algorithm are introduced in detail. The algorithm proposed in this paper has the characteristics of reliable algorithm, high mesh generation efficiency and mesh quality. Finally, the reliability of the proposed algorithm is verified by an example of surface mesh generation.

목차

Abstract
1. Introduction
2. Overall Algorithm
3. Details of the Algorithm
4. Results and Comparisons
5. Conclusion
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0