메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Changha Hwang (Dankook University)
저널정보
계명대학교 자연과학연구소 Quantitative Bio-Science Quantitative Bio-Science Vol.39 No.1
발행연도
2020.5
수록면
75 - 79 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
From the discovery of new drug candidates through clinical trials to their approval, it takes approximately 15 years to launch a new drug into the market, and costs approximately one trillion to two trillion won. Despite several improvements in the drug development pipeline over the past 30 years, failures have skyrocketed at all stages of clinical trials owing to safety reasons. To improve the success rate of clinical trials, it is necessary to identify drug candidates that may fail in the clinical trials. Therefore, we need to develop reliable models to predict the outcomes of clinical trials of drug candidates. In this paper, we propose a deep multimodal classification model based on informative chemical features of the drugs and target-based features. Experimental results reported on the PrOCTOR dataset indicate that the proposed model performs better in a multimodal setting. Comparing ensemble models based on random forests and extra trees, the proposed deep multimodal classifier obtains the highest value for the area under the receiver operator curve and area under the precision-recall curve. The results of this study demonstrate that the proposed multimodal classifier can be used to predict the outcomes of clinical trials effectively.

목차

ABSTRACT
1. Introduction
2. Proposed Deep Multimodal Classification Model
3. Experimental Study
4. Conclusion
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0