메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유호성 (중앙대학교) 이용래 (중앙대학교) 김문겸 (중앙대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제69권 제6호
발행연도
2020.6
수록면
783 - 791 (9page)
DOI
10.5370/KIEE.2020.69.6.783

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Low uncertainty is essential when operating the power system in a stable state. Recently, the uncertainty in the power systems has increased due to the growth of renewable energy. This paper proposes a method to reduce the uncertainty of the power systems including renewable energy by using Long Short-term Memory (LSTM) algorithm. Through repeated simulation, the optimal LSTM model of each renewable unit is created. probabilistic scenario is created by monte-carlo simulation and k-means clustering algorithm, and then we assess risk for each scenario through a test system created with reference to the actual system. To validate the superiority of the proposed method, the risk assessment are conducted through local level test system. The results demonstrate that the optimal LSTM model reduces the risk index compared to other predicted models.

목차

Abstract
1. 서론
2. 재생에너지의 불확실성 모델링
3. 장 · 단기 기억을 고려한 신경망 (LSTM)
4. 확률적 리스크 평가
5. 사례 연구
6. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0