메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
고성룡 (서울대학교) 주혜리 (서울대학교) 이다정 (서울대학교)
저널정보
한국인지과학회 인지과학 인지과학 제31권 제1호
발행연도
2020.3
수록면
1 - 23 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이 논문에서는 지난 40여 년 동안 인지심리학에서 가장 중요한 모형 가운데 하나이며 근래에는 인지신경과학에서도 중요한 자리를 차지하고 있는 Ratcliff의 확산(diffusion)모형을 분석하는 도구 SNUDM을 소개한다. SNUDM은 확산과정을 Ratcliff & Tuerlinckx(2002)에 소개된 방식으로 단순 무작위걷기(random walk)를 묘사했다. 구체적으로, 모형이 생성하는 반응시간 분포는 주어진 파라미터 값들에서 작은 걸음으로 무작위걷기를 하여 일정 수준에 다다를 때까지 걸린 시간들로 이루어졌고, 모형의 파라미터 추정치는 단순도형(Simplex)방식을 이용하여 실험 자료와 생성된 분포를 비교하기 위해 계산된 카이제곱값을 최소화하는 파라미터의 값을 사용한다. 사용의 간편함을 위해, 입력 파일은 반응시간의 분위수(quantile), 시행수와 기타 정보를 담은 파일로 간단하게 했고, 프로그램 작동에 필요한 피험자 수와 조건 수 등은 질문에 답을 하는 방식으로 입력하도록 했으며, 조건에 따라 비교할 파라미터와 그렇지 않고 고정할 파라미터도 미리 지정하도록 했다. 분석도구 SNUDM이 파라미터 값을 제대로 찾아내는지를 알아보기 위해 Ratcliff, Gomez, & McKoon(2004)의 실험1 자료를 써서 검토한 결과, 그들이 보고한 실험 조건들 사이에서 보인 상대적인 표집율의 크기에서 동일한 패턴을 얻었다. 또한 SNUDM으로 생성된 자료를 DMAT과 fast-dm의 자료와 비교해 보았을 때 SNUDM은 시행수가 적을 경우에는 경계 파라미터를 fast-dm과는 비슷한 값을 추정하였고 DMAT보다는 작은 값으로 추정했으나 시행수가 많은 경우에는 세 도구 모두 비슷하게 파라미터를 추정하는 것을 확인하였다.

목차

Ratcliff의 확산모형
SNUDM의 확산과정
SNUDM의 구체적인 확산 모형 분석
SNUDM의 사용법과 이 분석도구를 이용한 분석
결론
참고문헌
Abstract

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-512-000603251