메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이용환 (IANSIT) 서진형 (Kyungin Women’s University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제25권 제4호(통권 제193호)
발행연도
2020.4
수록면
165 - 172 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 현재 일반적인 스마트 팩토리에서 데이터 전송에 사용하는 중앙 집중형 시스템에서 발생하는 데이터를 중앙의 센터까지 전송, 처리할 때 발셍하는 전송 지연 등의 문제 해결을 위하여 필요한 곳에 연산과 저장 장치를 도입하는 분산 컴퓨팅 패러다임 (Distributed Computing Paradigm)인 온-디바이스 (On-Device) 기반 에지 컴퓨팅 (Edge Computing) 기술과 빅데이터 분석 기술 및 활용 방법의 연구를 통하여 설비 고장 등을 예지하여 가동율을 높일 수 있는 산업현장의 설비관리에 활용되는 솔루션을 제안한다. 그러나 에지 컴퓨팅 기반의 기술이 실제 적용되더라도 네트워크 에지에서 장치의 증가는 많은 양의 데이터가 데이터 센터로 전달되어 네트워크 대역이 한계치에 이르게 되어 네트워크 기술의 향상에도 데이터 센터는 수많은 응용에서 중요한 요건이 되는 수용 가능한 전송 속도와 응답 시간을 보장하지 못하게 된다. 이와 같은 요구조건을 수용할 수 있는 일체형 하드웨어 기술과 공장관리 및 제어 기술을 적용한 설비보존 및 스마트 팩토리 산업 분야에 적용할 수 있는 연구를 통하여 생산성 증대를 지원할 수 있는 지능적 설비관리를 지원하도록 하여 추후 빅데이터에 적합한 딥러닝을 적용할 수 있는 인공지능 기반 설비 예지 보전 분석 도구로 발전할 수 있는 기반을 제공한다.

목차

[Abstract]
[요약]
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. The Proposed Scheme
Ⅳ. Performance
Ⅴ. Conclusions
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0