메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박범수 (Hanbat National University) 강은정 (Hanbat National University) 강태욱 (Electronics and Telecommunications Research Institute) 이재진 (Electronics and Telecommunications Research Institute) 김성은 (Hanbat National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제24권 제1호
발행연도
2020.3
수록면
120 - 126 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 인체의 임펄스 응답 신호를 이용하여 사용자를 인식하는 방법을 제안한다. 인체는 물, 근육, 지방, 뼈 등으로 구성되어 있고, 이러한 구성비는 사람마다 다르게 형성되어 있다. 기존의 인체 통신 연구에서는 인체가 커패시터와 저항으로 이루어진 회로로 모델링 되었고, 회로의 특징은 인체의 구성 특성에 따라 다르다는 것이 밝혀졌다. 따라서 인체는 개인별 고유한 채널로 인식될 수 있고, 이를 이용한 사용자 인식이 가능하다는 연구가 보고 되었다. 이 연구에서는, 임펄스 신호를 인체에 인가하여 임펄스 응답 신호를 측정하고, empirical mode decomposition 기법으로 노이즈를 제거한다. 그리고 10개의 피크 값을 추출하고 피크 간 값의 차이를 특징량으로 사용하여 사용자 인증을 수행하였다. 6명의 참가자로부터 수집한 데이터를 k-nearest neighbors(KNN) 알고리즘을 사용하여 분류 성능을 확인한 결과, 임펄스 응답 신호의 전체 시계열 데이터의 분류 정확도는 91.57%이었으나, 제안한 피크 간 값의 차이를 특징량으로 하여 분류를 하였을 때 분류 정확도가 97.71%로 크게 향상되는 것을 확인할 수 있었다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 실험 데이터
Ⅲ. Empirical Mode Decomposition (EMD)
Ⅳ. 특징 추출
Ⅴ. 결과 및 분석
Ⅵ. 결론
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-056-000545259