메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최찬용 (Korea Railroad Research Institute) 김현기 (Korea Railroad Research Institute) 김영철 (Korail Research Institute Korea Railroad) 김상수 (WISEiTECH)
저널정보
한국지반신소재학회 한국지반신소재학회 논문집 한국지반신소재학회 논문집 제19권 제1호
발행연도
2020.3
수록면
45 - 53 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
철도분야에서도 계측자료를 바탕으로 머신러닝 기법을 이용하여 예측 분석하는 시도가 점차적으로 증가하고 있는 실정이다. 이 논문에서는 열차의 차상가속도 데이터를 기반으로 궤도의 품질을 결정하는 지표 중에 하나인 궤도품질지수를 머신러닝기법을 활용하여 예측하였다. 머신러닝 기법으로 활용하고 있는 대표적인 3개의 모델로 궤도품질지수를 예측하여 가장 정확도가 높은 모델은 XGBoost으로 데이터셋에서 85% 이상의 예측정확도를 보였다. 또한 윤축과 대차의 z축의 진동가속도가 고저 궤도품질지수의 기여도가 높은 것으로 나타났으며, 이는 기존 연구결과와도 잘 일치하였다. 이러한 결과를 볼 때 단일 알고리즘인 서포터 벡터머신보다는 앙상블 알고리즘을 적용한 랜덤포레스트와 XGBoost이 정확도가 높은 것으로 판단된다. 따라서 머신러닝 기법에서 적용모델에 따라 정확도가 달라질 수 있기 때문에 차량진동가속도를 이용한 궤도품질지수를 예측하기 위해서는 앙상블 알고리즘을 가지는 모델을 적용하는 것이 적절할 것으로 판단된다.

목차

ABSTRACT
요지
1. 서론
2. 데이터 측정 및 전처리 방법
3. 데이터의 이상치 분석 및 기여도
4. 가속도데이터를 이용한 TQI의 예측
5. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-532-000525563