메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤여수 (청주대학교) 김광백 (신라대학교) 박현준 (청주대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제3호
발행연도
2020.3
수록면
349 - 354 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
녹지 영역의 확충을 위한 사전 조사에는 많은 비용과 시간이 필요하다는 문제가 발생한다. 본 논문에서는 구글 어스를 이용한 합성곱 신경망 기반의 녹지 분류를 통해 특정 지역의 녹지 비율을 측정함으로써 문제를 해결한다. 먼저 제안하는 방법은 구글 어스에서 여러 지역 영상을 수집하고 합성곱 신경망을 이용하여 학습한다. 제안하는 방법은 특정 지역의 녹지 비율을 측정하기 위해서 영상을 재귀적으로 분할하고 학습된 모델을 이용하여 녹지 여부를 판단한 뒤, 녹지로 판단된 영역 면적을 이용하여 녹지 비율을 계산한다. 실험 결과 제안하는 방법은 다양한 지역의 녹지 비율 측정에 높은 성능을 보여주는 것을 확인할 수 있었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 녹지 비율 측정을 위한 합성곱 신경망 학습 방법
Ⅲ. 녹지 비율 측정 방법
Ⅳ. 실험 및 결과 분석
Ⅴ. 결론
REFERENCES

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000538292