메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김태완 (Korea Military Academy) 김종환 (Korea Military Academy) 문호석 (Korea National Defense University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제25권 제3호(통권 제192호)
발행연도
2020.3
수록면
33 - 42 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
각종 감시체계에서 육안에 의존하여 물체를 식별해내는 것은 어렵고 실수하기 쉬우므로 군 감시체계에서 자동식별능력의 필요성은 더욱 높아지고 있다. 사회에 발표되는 모형들은 군 무기체계에 대한 데이터가 반영되지 않아 군에 바로 적용하는 것은 제한된다. 본 연구는 군용 헬기의 이미지에 합성곱 신경망을 적용하여 피아식별 모형을 구축한 연구이다. 제안하는 모형은 우리나라에서 주로 사용하고 있는 헬기인 AH-64 기종과 공산권 국가에서 주로 사용하고 있는 헬기인 Mi-17 기종의 이미지를 통해 학습시켜 구축되었다. 제안하는 모형의 성능을 살펴보면, 평가척도를 이용하여 평가한 결과 97.8%의 정확도, 97.3%의 정밀도, 98.5% 재현율과 97.9%의 F-measure의 성능을 보임을 확인하였다. 이런 분류결과에 대해서 Feature-map을 통해 아군 헬기의 바퀴와 무장, 그리고 흡기구 주변이, 적군 헬기의 바퀴, 흡기구, 그리고 창문 부위가 피아식별 모형의 분류 기준임을 확인할 수 있었다. 본 연구는 CNN을 이용하여 군 무기체계 중 헬기의 영상정보에 대한 피아식별에 대한 분류를 처음으로 시도한 연구이며, 본 연구에서 제안하는 모형은 기존의 다른 무기체계에 대한 분류 모형보다 높은 정확도를 보인다.

목차

[Abstract]
[요약]
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Conclusions
REFERENCES

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0