메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Elham Parsaeimehr (Islamic Azad University - Arak Branch) Mehdi Fartash (Islamic Azad University - Arak Branch) Javad Akbari Torkestani (Islamic Azad University - Arak Branch)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.20 No.1
발행연도
2020.3
수록면
69 - 76 (8page)
DOI
10.5391/IJFIS.2020.20.1.69

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Named entity recognition and relation extraction are two principal tasks in most natural language processing systems. The majority of methods used in the field implement these two issues independently, thus leading to possible problems such as error propagation from one component (entity detection) to another (relation extraction). To solve such problems, we propose a new architecture for joint identification of entity mentions and their relation by employing a deep neural network framework. The model not only overcomes the error propagation challenge but also improves the detection results of both tasks owing to the cooperation with each other. Experiments on publicly available sources demonstrate that our joint model surpasses competitors in terms of accuracy. The results highlight the improvement achieved by the proposed deep neural network framework for the entity mention and relation classification tasks. Furthermore, we tested the effect of increasing the sentence length and demonstrated its negative influence on the performance.

목차

Abstract
1. Introduction
2. Related Works
3. Proposed Architecture
4. Experiments
5. Conclusion
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-000428694