메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조정원 (군산대학교) 이민혜 (군산대학교) 이홍로 (군산대학교) 정용석 (제주대학교) 백정호 (농촌진흥청) 김경환 (농촌진흥청) 이창우 (군산대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제24권 제4호
발행연도
2019.8
수록면
1 - 8 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
식물 표현체(plant phenomics) 연구는 우수한 형질의 식물 품종과 유전적 특성을 선별하기 위해 여러 식물체의 형태적 특징을 관측하고, 획득한 영상 빅데이터를 분석하는 기술이다. 기존의 방법은 검출 대상에 따라 직접 색상 임계값을 변경해야 하기 때문에 빅데이터를 다루는 정밀검정시스템에 적용하기 어렵다. 본 논문에서는 정밀검정시스템을 위한 식물체와 배경의 자동 분할이 가능한 합성곱 신경망(Convolution neural network: CNN) 구조를 제안한다. LeafNet은 9개의 컨벌루션 계층과 식물의 유무를 판단하기 위한 시그모이드(Sigmoid) 활성화 함수로 구성된다. LeafNet을 이용한 학습 결과, 식물 모종 영상에 대하여 정밀도 98.0%, 재현율 90.3%의 결과가 도출되어 정밀검정시스템의 적용 가능성을 확인하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안 방법
4. 성능 평가
5. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0