메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Vijayalakshmi Gosu (MBM Engineering College) Shivali Arora (MNIT Jaipur) Verraboina Subbaramaiah (MNIT Jaipur)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제25권 제4호
발행연도
2020.8
수록면
488 - 497 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The present study investigates the feasibility of nitrogenous heterocyclic compounds (NHCs) (Pyridine-Quinoline) degradation by catalytic wet peroxidation (CWPO) in the presence of nanoscale zerovalent iron supported on granular activated carbon (nFe0/GAC) using statistical optimization technique. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the process parameters of CWPO process such as initial pH, catalyst dose, hydrogen peroxide dose, initial concentration of pyridine (Py) and quinolone (Qn) were chosen as the main variables, and total organic carbon (TOC) removal and total Fe leaching were selected as the investigated response. The optimization of process parameters by desirability function showed the ~85% of TOC removal with process condition of initial solution pH 3.5, catalyst dose of 0.55 g/L, hydrogen peroxide concentration of 0.34 mmol, initial concentration of Py 200 mg/L and initial concentration of Qn 200 mg/L. Further, for TOC removal the analysis of variance results of the RSM revealed that all parameter i.e. initial pH, catalyst dose, hydrogen peroxide dose, initial concentration of Py and initial concentration of Qn were highly significant according to the p values (p < 0.05). The quadratic model was found to be the best fit for experimental data. The present study revealed that BBD was reliable and effective for the determination of the optimum conditions for CWPO of NHCs (Py-Qn).

목차

ABSTRACT
1. Introduction
2. Materials and Methods
3. Result and Discussion
4. Conclusions
References

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-539-000378849