메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최병서 (서울대학교) 이익훈 (광주대학교) 이상구 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.47 No.1
발행연도
2020.1
수록면
70 - 77 (8page)
DOI
10.5626/JOK.2020.47.1.70

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
한국어 커뮤니티 등에서 수집되는 인터넷 텍스트 데이터를 형태소 분석하기 위해서는, 띄어쓰기 오류가 있는 문장에서도 정확히 형태소 분석을 해내야 하고, 신조어 등의 사전 외 어휘 입력에 대한 원형복원 성능이 충분해야 한다. 그러나 기존 한국어 형태소분석기는 원형복원에 사전 또는 규칙 기반 알고리즘을 사용하는 경우가 많다. 본 논문에서는 시퀀스-투-시퀀스 모델을 기반으로 띄어쓰기 문제와 신조어 문제를 효과적으로 처리할 수 있는 한국어 형태소 분석기 모델을 제안한다. 본 모델은 사전을 사용하지 않고, 규칙 기반 전처리를 최소화한다. 일반적으로 사용하는 음절 외에도 음절 바이그램과 자소를 입력자질로 같이 사용하며, 공백을 제거한 데이터를 학습 데이터로 같이 사용한다. 제안 모델은 세종 말뭉치를 이용한 실험에서 사전을 사용하지 않는 기존 형태소 분석기에 비해 뛰어난 성능이 나왔다. 띄어쓰기가 없는 데이터셋 및 인터넷에서 직접 수집한 데이터셋에 대해서도 높은 성능이 나오는 것을 확인하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 모델 설명
4. 실험
5. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0