메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이정승 (호서대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제25권 제4호
발행연도
2019.12
수록면
123 - 139 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
주요 구인구직사이트의 직무분류체계가 사이트마다 상이하고 SW분야에서 제안한 ‘SQF(Sectoral Qualifications Framework)’의 직무분류체계와도 달라 SW산업에서 SW기업, SW구직자, 구인구직사이트가 모두 납득할 수 있는 새로운 직무분류체계가 필요하다. 본 연구의 목적은 주요 구인구직사이트의 구인정보와 ‘NCS(National Competaency Standars)’에 기반을 둔 SQF를 분석하여 시장 수요를 반영한 표준 직무분류체계를 구축하는 것이다.
이를 위해 주요 구인구직사이트의 직종 간 연관분석과 SQF와 직종 간 연관분석을 실시하여 직종 간 연관규칙을 도출하고자 한다. 이 연관규칙을 이용하여 주요 구인구직사이트의 직무분류체계를 맵핑하고 SQF와 직무분류체계를 맵핑함으로써 데이터 기반의 지능형 직무분류체계를 제안하였다. 연구 결과 국내 주요 구인구직사이트인 ‘워크넷,’ ‘잡코리아,’ ‘사람인’에서 3만여 건의 구인정보를 open API를 이용하여 XML 형태로 수집하여 데이터베이스에 저장했다. 이 중 복수의 구인구직사이트에 동시 게시된 구인정보 900여 건을 필터링한 후 빈발 패턴 마이닝(frequent pattern mining)인 Apriori 알고리즘을 적용하여 800여 개의 연관규칙을 도출하였다. 800여 개의 연관규칙을 바탕으로 워크넷, 잡코리아, 사람인의 직무분류체계와 SQF의 직무분류체계를 맵핑하여 1~4차로 분류하되 분류의 단계가 유연한 표준 직무분류체계를 새롭게 구축했다.
본 연구는 일부 전문가의 직관이 아닌 직종 간 연관분석을 통해 데이터를 기반으로 직종 간 맵핑을 시도함으로써 시장 수요를 반영하는 새로운 직무분류체계를 제안했다는데 의의가 있다. 다만 본 연구는 데이터 수집 시점이 일시적이기 때문에 시간의 흐름에 따라 변화하는 시장의 수요를 충분히 반영하지 못하는 한계가 있다. 계절적 요인과 주요 공채 시기 등 시간에 따라 시장의 요구하는 변해갈 것이기에 더욱 정확한 매칭을 얻기 위해서는 지속적인 데이터 모니터링과 반복적인 실험이 필요하다. 본 연구 결과는 향후 SW산업 분야에서 SQF의 개선방향을 제시하는데 활용될 수 있고, SW산업 분야에서 성공을 경험삼아 타 산업으로 확장 이전될 수 있을 것으로 기대한다.

목차

1. 서론
2. 관련 연구
3. 연구방법론
4. 연구 결과
5. 결론 및 시사점
참고문헌(References)
Abstract

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-000230158