메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김연중 (인제대학교) 김태우 (인제대학교) 윤종성 (인제대학교) 김명규 (HTI Korea)
저널정보
한국해양공학회 한국해양공학회지 한국해양공학회지 제33권 제6호(통권 제151호)
발행연도
2019.12
수록면
590 - 596 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Numerous deaths and substantial property damage have occurred recently due to frequent disasters of the highest intensity according to the abnormal climate, which is caused by various problems, such as global warming, all over the world. Such large-scale disasters have become an international issue and have made people aware of the disasters so they can implement disaster-prevention measures. Extensive information on disaster prevention actively has been announced publicly to support the natural disaster reduction measures throughout the world. In Japan, diverse developmental studies on disaster prevention systems, which support hazard map development and flood control activity, have been conducted vigorously to estimate external forces according to design frequencies as well as expected maximum frequencies from a variety of areas, such as rivers, coasts, and ports based on broad disaster prevention data obtained from several huge disasters. However, the current reduction measures alone are not sufficiently effective due to the change of the paradigms of the current disasters. Therefore, in order to obtain the synergy effect of reduction measures, a study of the establishment of an integrated system is required to improve the various disaster prevention technologies and the current disaster prevention system. In order to develop a similar typhoon search system and establish a disaster prevention infrastructure, in this study, techniques will be developed that can be used to forecast typhoons before they strike by using artificial intelligence (AI) technology and offer primary disaster prevention information according to the direction of the typhoon. The main function of this model is to predict the most similar typhoon among the existing typhoons by utilizing the major typhoon information, such as course, central pressure, and speed, before the typhoon directly impacts South Korea. This model is equipped with a combination of AI and DNN forecasts of typhoons that change from moment to moment in order to efficiently forecast a current typhoon based on similar typhoons in the past. Thus, the result of a similar typhoon search showed that the quality of prediction was higher with the grid size of one degree rather than two degrees in latitude and longitude.

목차

ABSTRACT
1. 서론
2. 심층학습(Deep learning)
3. 유사태풍 예측 시스템 구축
4. 유사태풍 예측 결과
5. 결론
References

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0