메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Juyoung Hong (Chonnam National University) Tae Yoon Kim (Keimyung University) Jeong-Soo Park (Keimyung University)
저널정보
계명대학교 자연과학연구소 Quantitative Bio-Science Quantitative Bio-Science Vol.38 No.2
발행연도
2019.11
수록면
121 - 130 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Much of knowledge on future climate change depends on projections from the simulation codes with global circulation models (GCMs) and regional climate models (RCMs). But even state-of-art simulation codes still have a rather coarse resolution and and are substantially biased compared to real-world climate. In an attempt to remove systematic biases between simulation model output and real observations, a variety of statistical bias correction (BC) methods has been developed. The methods are classified to univariate and multivariate ones. This study reviews these techniques with more emphasis on recently advanced multivariate methods. These includes delta change approach, quantile mapping, quantile delta mapping, empirical copula bias correction, multivariate quantile delta mapping and multivariate stochastic BC with optimal transport function. An application of multivariate BC method to annual daily extreme rainfall in Korea peninsula is presented. We applied an ensemble prediction with generalized extreme value distribution (GEVD) to the data obtained as simulated by the coupled model intercomparison project phase six (CMIP6) models. Simulation data under three RCP (Representative Concentration Pathway) scenarios, namely RCP 2.6, RCP 4.5 and RCP 8.5, are employed. The 20-year and 50-year return levels and return periods relative to the reference years (1973-2014) are estimated for two future periods, namely period 1 (2021-2050) and period 2 (2061-2099).

목차

Abstract
1. Introduction
2. Univariate Bias Correction Methods
3. Multivariate Bias Corrections
4. Application to Precipitation Extremes in Korea
5. Discussion and Conclusion
References

참고문헌 (38)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-047-000138146