메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Euhee Kim (Shinhan University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제24권 제11호(통권 제188호)
발행연도
2019.11
수록면
41 - 49 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 비지도 기계학습 기술과 코퍼스의 각 단어를 이용하여 한국어 단어를 형태소 분석하는 언어 모델을 구축하는데 목적을 둔다. 그리고 이 언어 모델의 단어 형태소 분석의 결과와 언어 심리실험결과에서 얻은 한국어 언어사용자의 단어 이해/판단 시간이 상관관계을 갖는지를 규명하고자 한다. 논문에서는 한국어 세종코퍼스를 언어 모델로 학습하여 형태소 분리 규칙을 통해 한국어 단어를 자동 분리하는데 발생하는 단어 정보량(즉, surprisal(놀라움) 정도)을 측정하여 실제 단어를 읽는데 걸리는 반응 시간과 상관이 있는지 분석하였다. 이를 위해 코퍼스에서 단어에 대한 형태 구조 정보를 파악하기 위해 Morfessor 알고리즘을 적용하여 단어의 하위 단위 분리와 관련한 문법/패턴을 추출하고 형태소를 분석하는 언어 모델이 예측하는 정보량과 반응 시간 사이의 상관관계를 알아보기 위하여 선형 혼합 회귀(linear mixed regression) 모형을 설계하였다. 제안된 비지도 기계학습의 언어 모델은 파생단어를 d-형태소로 분석해서 파생단어의 음절의 형태로 처리를 하였다. 파생단어를 처리하는 데 필요한 사람의 인지 노력의 양 즉, 판독 시간 효과가 실제로 형태소 분류하는 기계학습 모델에 의한 단어 처리/이해로부터 초래될 수 있는 놀라움과 상관함을 보여 주었다. 본 연구는 놀라움의 가설 즉, 놀라움 효과는 단어 읽기 또는 처리 인지 노력과 관련이 있다는 가설을 뒷받침함을 확인하였다.

목차

Abstract
요약
I. Introduction
II. Methods
III. The Proposed Language Model
IV. Experiment
V. Conclusions
REFERENCES

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0