메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국농공학회 한국농공학회논문집 한국농공학회논문집 제61권 제2호
발행연도
2019.1
수록면
63 - 74 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The objective of this study was to evaluate the influence of rainfall observation network on daily dam inflow using artificial neural networks(ANNs). Chungju Dam and Soyangriver Dam were selected for the study watershed. Rainfall and dam inflow data were collected as input data for constructionof ANNs models. Five ANNs models, represented by Model 1 (In watershed, point rainfall), Model 2 (All in the Thiessen network, point rainfall),Model 3 (Out of watershed in the Thiessen network, point rainfall), Model 1-T (In watershed, area mean rainfall), Model 2-T (All in the Thiessennetwork, area mean rainfall), were adopted to evaluate the influence of rainfall observation network. As a result of the study, the models that usedall station in the Thiessen network performed better than the models that used station only in the watershed or out of the watershed. The models thatused point rainfall data performed better than the models that used area mean rainfall. Model 2 achieved the highest level of performance. The modelperformance for the ANNs model 2 in Chungju dam resulted in the R2 value of 0.94, NSE of 0.94 NSEln of 0.88 and PBIAS of –0.04 respectively. The model-2 predictions of Soyangriver Dam with the R2 and NSE values greater than 0.94 were reasonably well agreed with the observations. Theresults of this study are expected to be used as a reference for rainfall data utilization in forecasting dam inflow using artificial neural networks.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0