메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국농공학회 한국농공학회논문집 한국농공학회논문집 제61권 제3호
발행연도
2019.1
수록면
55 - 65 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Although crack on concrete exists from its early formation, crack requires attention as it affects stiffness of structure and can lead demolition of structureas it grows. Detecting cracks on concrete is needed to take action prior to performance degradation of structure, and deep learning can be utilized forit. In this study, transfer learning, one of the deep learning techniques, was used to detect the crack, as the amount of crack’s image data was limited. Pre-trained Inception-v3 was applied as a base model for the transfer learning. Web scrapping was utilized to fetch images of concrete wall with orwithout crack from web. In the recognition of crack, image post-process including changing size or removing color were applied. In the visualizationof crack, source images divided into 30px, 50px or 100px size were used as input data, and different numbers of input data per category were appliedfor each case. With the results of visualized crack image, false positive and false negative errors were examined. Highest accuracy for the recognizingcrack was achieved when the source images were adjusted into 224px size under gray-scale. In visualization, the result using 50 data per category under100px interval size showed the smallest error. With regard to the false positive error, the best result was obtained using 400 data per category, andregarding to the false negative error, the case using 50 data per category showed the best result.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0