메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회지 대한수학회지 제56권 제5호
발행연도
2019.1
수록면
1,333 - 1,354 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In authors' paper in 2007, it was shown that the BSE-exten\-sion of $C^1_0(\mathbf{R})$, the algebra of continuously differentiable functions $f$ on the real number space $\mathbf{R}$ such that $f$ and $df/dx$ vanish at infinity, is the Lipschitz algebra $Lip_1(\mathbf{R})$. This paper extends this result to the case of $C^n_0(\mathbf{R}^d)$ and $C^{n-1,1}_b(\mathbf{R}^d)$, where $n$ and $d$ represent arbitrary natural numbers. Here $C^n_0(\mathbf{R}^d)$ is the space of all $n$-times continuously differentiable functions $f$ on $\mathbf{R}^d$ whose $k$-times derivatives are vanishing at infinity for $k=0,\ldots,n$, and $C^{n-1,1}_b(\mathbf{R}^d)$ is the space of all $(n-1)$-times continuously differentiable functions on $\mathbf{R}^d$ whose $k$-times derivatives are bounded for $k=0, \ldots ,n-1$, and $(n-1)$-times derivatives are Lipschitz. As a byproduct of our investigation we obtain an important result that $C^{n-1,1}_b(\mathbf{R}^d)$ has a predual.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0