메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제56권 제4호
발행연도
2019.1
수록면
911 - 927 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $\mathscr{B}_{p,n}^{\upeta, \upmu}\left(\upalpha\right)$; $\left( \upeta, \upmu\in \mathbb{R}, n,p\in \mathbb{N}\right) $ denote all functions $f$ class in the unit disk $\mathbb{U}$ as $f(z)=z^p+\sum_{k=n+p}^{\infty}a_kz^k$ which satisfy: \begin{align*} & \left| \left[ \frac{f'(z)}{pz^{p-1}}\right]^{\upeta} \left[ \frac{z^p}{f(z)}\right] ^{\upmu}-1\right| <1-\frac{\upalpha}{p}; \quad \left( z\in \mathbb{U}, \: 0\leq \upalpha<p\right). \intertext{ And $\mathscr{M}_{p,n}^{\upeta,\upmu}\left(\upalpha\right)$ indicates all meromorphic functions $h$ in the punctured unit disk $\mathbb{U}^{\ast}$ as $h(z)=z^{-p}+\sum_{k=n-p}^{\infty}b_kz^k$ which satisfy:} & \left| \left[ \frac{h'(z)}{-pz^{-p-1}}\right]^{\upeta} \left[ \frac{1}{z^p h(z)}\right]^{\upmu}-1\right| <1-\frac{\upalpha}{p}; \quad \left( z\in \mathbb{U}, \: 0\leq \upalpha<p\right). \end{align*} In this paper several sufficient conditions for some classes of functions are investigated. The authors apply Jack's Lemma, to obtain this conditions. Furthermore, sufficient conditions for strongly starlike and convex $p$-valent functions of order $\gamma$ and type $\beta$, are also considered.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0