메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국농촌계획학회 농촌계획 농촌계획 제25권 제3호
발행연도
2019.1
수록면
59 - 66 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study saw developed to build a landscape monitoring methodology by simulation of landscape effect prediction. A Visual landscape planning and management system has been introduced and implemented by each ministry so as to solve the problems of visual landscape destruction due to recognition on the value of natural landscape of beautiful territory and various development projects. At present, this system emphasizes the importance of the visual and perceptual aspect of the landscape however, there is a lack of techniques required for comprehensively predicting, evaluating, and managing it. Furthermore, sustainable landscape management after the completion of development projects has been inadequately carried out, as the focus has been only on consultation in the planning process of the development project in institutional performance. The viewpoint for judging the change in the visual landscape of the development plan and development project should be selected as the effective point where the development project is expected to result in a remarkable landscape change. As for the method of selecting effective viewpoints, the main viewpoints are selected by analyzing the visible area of the target viewpoint. When selecting the viewpoint centered on the viewpoint target, it was judged that it is possible to reduce the procedure of selecting and checking the existing preliminary viewpoints and widening the effective visible range. The proposed visual landscape monitoring is expected to be able to solve the existing institutional problems, and to be used when the implementers and authors of the development projects review the effects on the landscape.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0