메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
서울대학교 인지과학연구소 Journal of Cognitive Science Journal of Cognitive Science 제20권 제1호
발행연도
2019.1
수록면
147 - 188 (42page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This research exemplifies how statistical semantic models and word embedding techniques can play a role in understanding the system of human knowledge. Intuitively, we speculate that when a person is given a piece of text, they first classify the semantic contents, group them to semantically similar texts previously observed, then relate their contents with the group. We attempt to model this process of knowledge linking by using word embeddings and topic modeling. Specifically, we propose a model that analyzes the semantic/thematic structure of a given corpus, so as to replicate the cognitive process of knowledge ingestion. Our model attempts to make the best of both word embeddings and topic modeling by first clustering documents and then performing topic modeling on them. To demonstrate our approach, we apply our method to the Corpus of Contemporary American English (COCA). In COCA, the texts are first divided by text type and then by subcategory, which represents the specific topics of the documents. To show the effectiveness of our analysis, we specifically focus on the texts related to the domain of science. First, we cull out science-related texts from various genres, then preprocess the texts into a usable, appropriate format. In our preprocessing steps, we attempt to fine-grain the texts with a combination of tokenization, parsing, and lemmatization. Through this preprocess, we discard words of little semantic value and disambiguate syntactically ambiguous words. Afterwards, using only the nouns from the corpus, we train a word2vec model on the documents and apply K-means clustering to them. The results from clustering show that each cluster represents each branch of science, similar to how people relate a new piece of text to semantically related documents. With these results, we proceed on to perform topic modeling on each of these clusters, which reveal latent topics cluster and their relationship with each other. Through this research, we demonstrate a way to analyze a mass corpus and highlight the semantic/thematic structure of topics in it, which can be thought as a representation of knowledge in human cognition.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0