메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Methods: The first phase involved the construction of the application using the Delphi method. In the second phase, the application was validated with a sample of 250 patients with shoulder pathology. Validity was measured for each diagnostic group using sensitivity, specificity, and positive and negative likelihood ratio (LR(+) and LR(–)). The correct classification ratio (CCR) for each patient and the factors related to worse classification were calculated using multivariate binary logistic regression (odds ratio, 95% confidence interval). Results: The mean time to complete the application was 15 ± 7 minutes. The validity values were the following: LR(+) 7.8 and LR(–) 0.1 for cervical radiculopathy, LR(+) 4.1 and LR(–) 0.4 for glenohumeral arthrosis, LR(+) 15.5 and LR(–) 0.2 for glenohumeral instability, LR(+) 17.2 and LR(–) 0.2 for massive rotator cuff tear, LR(+) 6.2 and LR(–) 0.2 for capsular syndrome, LR(+) 4.0 and LR(–) 0.3 for subacromial impingement/rotator cuff tendinopathy, and LR(+) 2.5 and LR(–) 0.6 for acromioclavicular arthropathy. A total of 70% of the patients had a CCR greater than 85%. Factors that negatively affected accuracy were massive rotator cuff tear, acromioclavicular arthropathy, age over 55 years, and high pain intensity (p < 0.05). Conclusions: The developed application achieved an acceptable validity for most pathologies. Because the tool had a limited capacity to identify the full clinical picture in the same patient, improvements and new studies applied to other groups of patients are required.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0