메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한암학회 Cancer Research and Treatment Cancer Research and Treatment 제51권 제3호
발행연도
2019.1
수록면
933 - 940 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose Considering the health impact of obesity and cancer, it is important to estimate the burden of cancer attributable to high body mass index (BMI). Therefore, the present study attempts to measure the health burden of cancer attributable to excess BMI, according to cancer sites. Materials and Methods The present study used nationwide medical check-up sample cohort data (2002-2015). The study subjects were 496,390 individuals (268,944 men and 227,446 women). We first calculated hazard ratio (HR) in order to evaluate the effect of excess BMI on cancer incidence and mortality. Then, the adjusted HR values and the prevalence of excess BMI were used to calculate the population attributable risk. This study also used the Global Burden of Disease method, to examine the health burden of obesity-related cancers attributable to obesity. Results The highest disability-adjusted life year (DALY) values attributable to overweight and obesity in men were shown in liver cancer, colorectal cancer, and gallbladder cancer. Among women, colorectal, ovarian, and breast (postmenopausal) cancers had the highest DALYs values attributable to overweight and obesity. Approximately 8.0% and 12.5% of cancer health burden (as measured by DALY values) among obesity-related cancers in men and women, respectively, can be prevented. Conclusion Obesity has added to the health burden of cancer. By measuring the proportion of cancer burden attributable to excess BMI, the current findings provide support for the importance of properly allocating healthcare resources and for developing cancer prevention strategies to reduce the future burden of cancer.

목차

등록된 정보가 없습니다.

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0