메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제51권 제3호
발행연도
2019.1
수록면
723 - 730 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Acquiring instrumentation signals generated from nuclear power plants (NPPs) is essential to maintainnuclear reactor integrity or to mitigate an abnormal state under normal operating conditions or severeaccident circumstances. However, various safety-critical instrumentation signals from NPPs cannot beaccurately measured on account of instrument degradation or failure under severe accident circumstances. Reactor vessel (RV) water level, which is an accident monitoring variable directly related toreactor cooling and prevention of core exposure, was predicted by applying a few signals to deep neuralnetworks (DNNs) during severe accidents in NPPs. Signal data were obtained by simulating the postulatedloss-of-coolant accidents at hot- and cold-legs, and steam generator tube rupture using modularaccident analysis program code as actual NPP accidents rarely happen. To optimize the DNN model for RVwater level prediction, a genetic algorithm was used to select the numbers of hidden layers and nodes. The proposed DNN model had a small root mean square error for RV water level prediction, and performedbetter than the cascaded fuzzy neural network model of the previous study. Consequently, theDNN model is considered to perform well enough to provide supporting information on the RV waterlevel to operators

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0