메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국부식방식학회 Corrosion Science and Technology Corrosion Science and Technology 제18권 제2호
발행연도
2019.1
수록면
61 - 71 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Flow-Accelerated Corrosion (FAC) is a phenomenon in which a protective coating on a metal surfaceis dissolved by a flow of fluid in a metal pipe, leading to continuous wall-thinning. Recently, manycountries have developed computer codes to manage FAC in power plants, and the FAC predictionmodel in these computer codes plays an important role in predictive performance. Herein, the FACprediction model was developed by applying a machine learning method and the conventional nonlinearregression method. The random forest, a widely used machine learning technique in predictive modelingled to easy calculation of FAC tendency for five input variables: flow rate, temperature, pH, Cr content,and dissolved oxygen concentration. However, the model showed significant errors in some inputconditions, and it was difficult to obtain proper regression results without using additional data points. In contrast, nonlinear regression analysis predicted robust estimation even with relatively insufficientdata by assuming an empirical equation and the model showed better predictive power when the interactionbetween DO and pH was considered. The comparative analysis of this study is believed to provideimportant insights for developing a more sophisticated FAC prediction model.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0