메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
인문사회과학기술융합학회 예술인문사회 융합 멀티미디어 논문지 예술인문사회 융합 멀티미디어 논문지 제9권 제8호
발행연도
2019.1
수록면
783 - 790 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
인공 신경망의 성공을 토대로 인지과학에서 인간 지능을 설명하려는 시도가 연결주의이다. 딥러닝 등 신경망 컴퓨터의 성과는 연결주의에 대한 전망도 낙관적일 것으로 보여준다. 그러나 고전적 계산주의, 또는 기호주의를 옹호하는 학자들(포더, 필리신, 맥래플린)은 인간의 언어와 사고의 관계를 토대로 연결주의는 성공할 수 없다고 주장하여 왔다. 연결주의에 대한 비판의 핵심은, 인공 신경망에는 체계성이 없기 때문에 신경망의 결과물은 우연적인 연합이나 조합에 불과하다는 것이다. 저자는 이 연구에서 연결주의에 대한 고전적 계산주의의 비판을 검토하고 연결주의가 인공 지능의 이론뿐 아니라 인간 지능의 이론으로서 여전히 확장될 수 있는 가능성을 제시한다. 이 연구의 구조는 다음과 같다. 첫째, 인공 신경망의 구조와 함께 연결주의에 대한 이해를 제시한다. 둘째, 고전적 계산주의자가 연결주의에 제기한 체계성 문제가 무엇인지를 소개한다. 셋째, 그 문제에 대한 연결주의의 대응으로 스몰렌스키의 벡터곱 이론을 소개한다. 넷째, 계산주의와 연결주의의 논쟁을 검토하여 체계성 문제가 어떤 방향으로 갈 때 연결주의와 고전적 계산주의 모두에게 발전적인 논의가 될 수 있는지를 모색한다.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0