메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제10권 제8호
발행연도
2019.1
수록면
59 - 65 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
암 조직에는 다양한 형태의 세포가 존재하지만, 이들의 조성을 실험적으로 확인하기는 매우 어렵다. 본 연구에서는 유전자 발현 데이터에 통계적 기계학습 모델을 적용하여 각 샘플의 세포 조성을 추론하고, 이러한 세포 조성이 암 조직과 정상 조직간에 차이가 있는지를 확인하였다. 두 가지 서로 다른 회귀 모델을 이용하여 세포 조성을 예측한 결과 CD8 T cell과 Neutrophil이 구강암 조직에서 정상 조직에 비해 증가함을 확인할 수 있었다. 또한 비지도학습 중 하나인 t-SNE를 적용하여, 유추된 세포 조성에 의해 정상 조직과 구강암 조직이 서로 군집을 이루고 있음을 확인하였고, 지도 학습 기반의 다양한 분류 알고리즘들을 이용하여 세포 조성 정보를 이용하여 구강암과 정상 조직을 예측하는 것이 가능함을 보였다. 이 연구는 구강암의 면역 세포 침투에 대한 이해도를 증진하는데에 도움을 줄 수 있을 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0