메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신유경 (아주대학교) 신현정 (아주대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제25권 제10호
발행연도
2019.10
수록면
511 - 516 (6page)
DOI
10.5626/KTCP.2019.25.10.511

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
데이터의 레코드들 중에 하나 이상의 속성값이 없는 경우는 비일비재하다. 많은 경우에 있어서 데이터의 수 대비 결측치가 없는 완전레코드의 수의 비율이 적다. 이에 대하여 평균값, 최빈값, 그리고 중앙값 등으로 대체하는 통계적 방법이 가장 보편적으로 쓰이고 있다. 또한 기계학습에서도 k-최근접 이웃탐색이나 의사결정나무 등을 활용한 결측치 추정방법들이 자주 활용된다. 전자는 각 속성의 대표하는 값으로 대체하는 전역적 방법인데 반해 후자는 해당 레코드와 유사한 레코드들의 속성값으로 대체하는 지역적 방법이라 할 수 있다. 그러나 한 속성의 값이 대부분 결측된 경우라면 두 방법 모두 활용하기 어렵다. 이러한 한계를 극복하기 위하여, 본 연구에서는 결측치의 속성과 상관성이 큰 이웃 속성들로부터 값을 추정하는 방법을 제안한다. 속성 간 상관성을 기반으로 하여 한 속성의 대부분의 값이 결측이 되더라도 활용할 수 있다. 제안 방법론으로는 속성들 간의 상관계수로 이루어진 상관 그래프를 만들고, 그래프 기반 준지도 학습을 적용한다. 결측치는 다른 속성값들로부터 상관계수에 비례하여 전파되어 추정된다. 본 논문에서 제안한 결측치 대체 추정 방법과 기존에 결측치 대체에 많이 사용하는 통계적 방법과 기계학습을 비교하여 실험을 진행하였다.

목차

요약
Abstract
1. 서론
2. 연구 배경
3. 제안 방법론
4. 실험
5. 결론
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0