메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
양승호 (Korea Maritime & Ocean University) 손경락 (Korea Maritime & Ocean University) 정재환 (Korea Maritime & Ocean University) 김현식 (Mattron)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제23권 제3호
발행연도
2019.9
수록면
777 - 784 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
인적이 드문 한적한 곳이나 산악 지역에서 화재가 발생 하였을 때 화재 상황을 정확하게 파악하고 적절한 초동 대처를 한다면 피해를 최소화할 수 있으므로 사전 화재인지시스템과 자동알림시스템이 요구된다. 본 연구에서는 객체인식을 위한 딥러닝 알고리즘 중 Faster-RCNN 및 SSD(single shot multibox detecter)을 사용한 화재 인식시스템을 전력선 통신과 연동하여 자동알림시스템을 시연하였으며 향 후 고압송전망을 이용한 산불화재 감시에 응용 가능함을 제시하였다. 학습된 모델을 장착한 라즈베리파이에 파이카메라를 설치하여 화재 영상인식을 수행하였으며, 검출된 화재영상은 유도형 전력선 통신망을 통하여 모니터링 PC로 전송하였다. 학습 모델별 라즈베리파이에서의 초당 프레임 율은 Faster-RCNN의 경우 0.05 fps, SSD의 경우 1.4 fps로 SSD의 처리속도가 Faster-RCNN 보다 28배 정도 빨랐다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 시스템 구성과 동작원리
Ⅲ. 화재 인식 모델 및 학습
Ⅳ. 화재인식 및 전력선 통신 실험
Ⅴ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0