메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조현우 (대구대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제20권 제9호
발행연도
2019.9
수록면
551 - 557 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
생산 공정에서 발생하는 비정상적인 이상 (fault)의 진단 (diagnosis)은 고품질의 제품을 생산함에 있어 필수적이라 할 수 있다. 회분식 공정 (batch process)과 같이 부가가치가 큰 반도체나 의약품 등의 첨단 제품을 생산하는 공정에서는 더욱 실시간 진단의 역할이 커지고 있다. 본 연구에서는 회분식 공정으로부터 얻은 측정 데이터와 비선형 분류(nonlinear classification)에 기초한 실시간 이상 진단 체계에 있어서 변수선택과 미래값 추정 기법이 진단 성능에 미치는 영향을 평가한다. 공정 변수 중 진단에 필수적이며 기여도가 높은 변수만을 선택하여 진단 모델 (diagnosis model)을 구성함으로써 진단 성능의 향상을 기대할 수 있다. 본 연구에서는 여러 변수선택 (variable selection) 기법들의 진단 성능을 비교 평가한다. 또한, 현재 진행 중인 회분식 조업 데이터는 종료되기 이전에는 진단에 필요한 전체 데이터를 얻을 수 없으므로 현재 시점에서 측정되지 못한 미래 측정값 (future observations)이 추정되어야 한다. 미래값 추정방법들의 선택이 변수선택과 분류기반 진단 관점에서 진단 성능에 어떻게 영향을 주는지 평가한다. 폴리염화비닐회분식 공정에 대한 사례 연구를 수행하여 최적의 변수선택과 미래값 추정방법을 도출하였다. 변수선택 방법에 따라 최대 21.9%와 13.3%의 성능 향상을 보였으며 미래값 추정방법에 따라서는 최대 25.8%와 15.2% 향상됨을 알 수 있었다.

목차

요약
Abstract
1. Introduction
2. 방법론
3. 사례 결과
4. 결론
References

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0