메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김태오 (가천대학교) 하은규 (가천대학교) 김창복 (가천대학교)
저널정보
한국정보기술학회 한국정보기술학회논문지 한국정보기술학회논문지 제17권 제9호(JKIIT, Vol.17, No.9)
발행연도
2019.9
수록면
19 - 30 (12page)
DOI
10.14801/jkiit.2019.17.9.19

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
태양광 발전은 일사량 및 온도 등 외부변화에 따른 안정적이고 효율적인 최대 전력 출력 전력점을 추적하기 위한 MPPT 알고리즘이 필요하다. 본 연구는 인공 신경망을 이용하여 기존 MPPT 알고리즘보다 신속하게 MPP를 추적할 수 있는 모델을 구현하였다. 제안 모델은 인공 신경망의 학습 데이터를 위해 다양한 일사량과 온도의 조합에 대해서 기존 MPPT 알고리즘으로 MPP의 전류와 전압을 찾았다. 획득한 MPP 데이터는 입력노드를 일사량과 온도로 출력 노드를 전류와 전압으로 하여 학습하였다. 실험결과 일사량과 온도 변화가 있는 0~0.3t 구간에서 추적시간은 기존 알고리즘인 P&O와 InC 그리고 Fuzzy는 각각 0.428t, 0.49t 그리고 0.4076t이였으며, 제안 모델은 0.32511t로서 기존 알고리즘 보다 0.1t 이상 신속하게 MPP를 추적하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안 MPPT 모델
Ⅳ. 결과 및 비교 분석
Ⅴ. 결론
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0