메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국환경생물학회 환경생물 환경생물 제27권 제4호
발행연도
2009.1
수록면
341 - 352 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study was carried out to investigated community structure of macrobenthic assemblages around the Wolseong Nuclear Power Plant, East Sea of Korea and seasonal sampling was performed from October 2007 to July 2008. A total of 163 macrobenthic fauna were collected. The overall average macrobenthos density and biomass were 1,005 individuals m-2 and 21.81 gWWt m-2, respectively. Based on the LeBris (1988) index, there were 10 dominant species accounting for approximately 69.00% of total individuals. The major dominant species were the polychaetes Spiophanes bombyx (349 inds. m-2), Mediomastus californiensis (82 inds. m-2), Sigambra tentaculata (55 inds. m-2), Magelona japonica (50 inds. m-2), Scoletoma longifolia (33 inds. m-2) and the Unidentified amphipod (Amphipoda spp., 72 inds. m-2). The conventional multi-variate statistics (cluster analysis and non-metric multi-dimensional scaling) applied to assess spatial variation in macrobenthic assemblages. Cluster analysis and nMDS ordination analysis based on the Bray-Curtis similarity identified 2 major station groups. The major group 1 was associated with sand dominated stations and was characterized by high abundance of the bivalves Mactra chinensis, Siliqua pulchella and the polychaete Protodorvillea egena. On the other hand, major group 2 was connected with mud dominated stations and was numerically dominated by the polychaetes M. californiensis, M. japonica, Sternaspis scutata, S. longifolia and the bivalves Thyasira tokunagai and Theora fragilis. However, macrobenthic community structure were no significant differences between the environmental variables (sediment type and depth) and heated discharge.

목차

등록된 정보가 없습니다.

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0