메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전산구조공학회 한국전산구조공학회논문집 한국전산구조공학회논문집 제22권 제1호
발행연도
2009.1
수록면
117 - 124 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
2차원 포텐셜 문제를 해석하기 위해 고차의 르장드르 형상함수에 기초를 둔 p-수렴 경계요소법이 제안되었다. p-수렴 경계요소법은 종래의 경계요소법에서 사용되는 형상함수와 성질이 다른 르장드르 다항식을 형상함수로 사용한다. p-수렴 유한요소법과 마찬가지로 고차의 형상함수에 따른 절점의 위치가 경계상에서 정해지지 않는다. 따라서 형상함수가 증가함에 따라 선형방정식을 구성하기 위한 수단으로 선점법을 이용하였다. p-수렴 경계요소법에서 선점법은 비대칭 계층적 선점법과 대칭 비계층적 선점법을 선택하여 수치해석을 수행하였다. 선택점들은 형상함수가 증가함에 따라 증가하는 성질을 나타내며 계층적 또는 대칭적으로 선택될 수 있다. p-수렴 경계요소법에서 나타나는 특이 적분항을 계산하기 위해 special numeric quadrature technique와 semi-analytical integration technique를 사용하였다. 사각모서리부에서 특이성을 가지는 L-형 영역문제를 해석한 결과 적은 수의 자유도에서 기존문헌의 결과와 차이가 거의 없는 정도인 10-2%단위 이하의 정확도를 보여주었다. 또한 같은 조건에서는 대칭형 선점의 위치를 이용해 계산한 값이 가장 높은 정확도를 보여주었다

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0