Schaefer모델, Gulland모델, Schnute모델과 같은 전통적인 모델들과, 비평형상태를 가정하는 ASPIC모델, 파라미터들의 확률을 이용하는 최대엔트로피 (maximum entropy, ME)모델을 이용하여 MSY와 fMSY 추정방법을 비교하였다. 한국 근해 참조기 (Pseudosciaena polyactis)의 MSY는 Gulland모델에서 추정된 35,061mt부터 ME모델에서 추정된 44,844mt의 범위로 추정되었으며, fMSY는 Schnute모델에서 262,188haul부터 ME모델에서의 355,200haul까지의 범위로 추정되었다. 가장 낮은 오차의 제곱평균 제곱근(root mean squar eror, RMSE)는 Gulland모델이었으며, 반면에 가장 높은 RMSE는 Schnute모델이었다. 가장 높은 결정계수(coefficient of determination, R2)는 ME모델이었으나, ASPIC모델은 가장 낮은 R2를 나타냈다. 반면에, Kapenta (Limnothrissa miodon)의 MSY는 ASPIC모델에서 16,880mt부터 ME모델의 25,373mt의 범위로 추정되었으며, fMSY는 ASPIC모델에서 94,580haul부터 Schnute모델에서 225,490haul의 범위로 추정되었다. 이 어종에서는 가장 낮은 RMSE와 가장 높은 R2가 모두 ME모델이었으며, 이는 모델과 자료의 적합도가 높다고 볼 수 있다. 또한, ME모델은 MSY시의 자원량 (BMSY), 환경수용력 (), 어획능률 () 및 자원의 내적증가율 ()을 추정할 수 있다.
It was compared the estimated parameters by the surplus production from three different models, i.e., three types (Schaefer, Gulland, and Schnute) of the traditional surplus production models, a stock production model incorporating covariates (ASPIC) model and a maximum entropy (ME) model. We also evaluated the performance of models in the estimation of their parameters. The maximum sustainable yield (MSY) of small yellow croaker (Pseudosciaena polyactis) in Korean waters ranged from 35,061 metric tons (mt) by Gulland model to 44,844 mt by ME model, and fishing effort at MSY (fMSY) ranged from 262,188 hauls by Schnute model to 355,200 hauls by ME model. The lowest root mean square error (RMSE) for small yellow croaker was obtained from the Gulland surplus production model, while the highest RMSE was from Schnute model. However, the highest coefficient of determination (R2) was from the ME model, but the ASPIC model yielded the lowest coefficient. On the other hand, the MSY of Kapenta (Limnothrissa miodon) ranged from 16,880 mt by ASPIC model to 25,373 mt by ME model, and fMSY, from 94,580 hauls by ASPIC model to 225,490 hauls by Schnute model. In this case, both the lowest root mean square error (RMSE) and the highest coefficient of determination (R2) were obtained from the ME model, which showed relatively better fits of data to the model, indicating that the ME model is statistically more stable and robust than other models. Moreover, the ME model could provide additional ecologically useful parameters such as, biomass at MSY (BMSY), carrying capacity of the population (), catchability coefficient () and the intrinsic rate of population growth ().