메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국환경영향평가학회 환경영향평가 환경영향평가 제20권 제2호
발행연도
2011.1
수록면
225 - 232 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In the study, CE-QUAL-W2 model was used and its examination and correction were conducted targeting 2001 and 2003 when the condition of rainfall was contradicted. Using the proved model in 2003, a scenario was implemented with management of locations for dewatering outlets and actual data for dam management in 1987 when inflow and outflow level were almost same. In case of the scenario which the location of dewatering outlets was 5m higher than usual location, exclusion efficiency for turbid water inflow at the beginning of precipitation was good. In case of the scenario which the location of dewatering outlets was 10m lower than usual location, exclusion efficiency for excluding turbid water remained in a reservoir after the end of precipitation. However, the scenario applying dam management data in 1987, exclusion efficiency was relatively low. In the scenario, power-generating water release spot at EL.57m for first four days after the beginning of precipitation, EL.52m for 5th to 8th and EL.42m from 9th days.An analysis of the scenario reveals that both excessive days exceeded 30NTU and average turbidity levels were decreased comparing before and after the alteration on outlets. The average turbidity levels were decreased by minimum of 55% to maximum of 70%and 30NTU exceeding days were decreased by 45 days at maximum. Also, since it could exclude most of turbid water in a reservoir before the destatifcation, the risk for turbid water evenly distributed in a reservoir along with turn-over could be decreased as well.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0