메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제46권 제1호
발행연도
2014.1
수록면
109 - 116 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
An electrical resistance tomography (ERT) technique combining the particle swarm optimization (PSO) algorithm withthe Gauss-Newton method is applied to the visualization of two-phase flows. In the ERT, the electrical conductivitydistribution, namely the conductivity values of pixels (numerical meshes) comprising the domain in the context of anumerical image reconstruction algorithm, is estimated with the known injected currents through the electrodes attached onthe domain boundary and the measured potentials on those electrodes. In spite of many favorable characteristics of ERT suchas no radiation, low cost, and high temporal resolution compared to other tomography techniques, one of the majordrawbacks of ERT is low spatial resolution due to the inherent ill-posedness of conventional image reconstructionalgorithms. In fact, the number of known data is much less than that of the unknowns (meshes). Recalling that binarymixtures like two-phase flows consist of only two substances with distinct electrical conductivities, this work adopts the PSOalgorithm for mesh grouping to reduce the number of unknowns. In order to verify the enhanced performance of theproposed method, several numerical tests are performed. The comparison between the proposed algorithm and conventionalGauss-Newton method shows significant improvements in the quality of reconstructed images

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0