메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제50권 제7호
발행연도
2018.1
수록면
1,154 - 1,159 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Precise prediction of the radiation interaction position in scintillators plays an important role in medicaland industrial imaging systems. In this research, the incident position of the gamma rays was predictedprecisely in a plastic rod scintillator by using attenuation technique and multilayer perceptron (MLP)neural network, for the first time. Also, this procedure was performed using nonlinear regression (NLR)method. The experimental setup is comprised of a plastic rod scintillator (BC400) coupled with two PMTsat two sides, a 60Co gamma source and two counters that record count rates. Using two proposedtechniques (ANN and NLR), the radiation interaction position was predicted in a plastic rod scintillatorwith a mean relative error percentage less than 4.6% and 14.6%, respectively. The mean absolute errorwas measured less than 2.5 and 5.5. The correlation coefficient was calculated 0.998 and 0.984,respectively. Also, the ANN technique was confirmed by leave-one-out (LOO) method with 1% error. These results presented the superiority of the ANN method in comparison with NLR and the othermethods. The technique and set up used are simpler and faster than other the previous position sensitivedetectors. Thus, the time, cost and shielding and electronics requirements are minimized and optimized.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0